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Abstract: Fluorescent molecular tomography (FMT) is a highly sensitive and noninvasive
imaging approach for providing three-dimensional distribution of fluorescent marker probes.
However, owing to its light scattering effect and the ill-posedness of inverse problems, it is
challenging to develop an efficient reconstruction algorithm that can achieve the exact location
and morphology of the fluorescence source. In this study, therefore, in order to satisfy the need
for early tumor detection and improve the sparsity of solution, we proposed a novel L1-L2 norm
regularization via the forward-backward splitting method for enhancing the FMT reconstruction
accuracy and the robustness. By fully considering the highly coherent nature of the system matrix
of FMT, it operates by splitting the objective to be minimized into simpler functions, which are
dealt with individually to obtain a sparser solution. An analytic solution of L1-L2 norm proximal
operators and a forward-backward splitting algorithm were employed to efficiently solve the
nonconvex L1-L2 norm minimization problem. Numerical simulations and an in-vivo glioma
mouse model experiment were conducted to evaluate the performance of our algorithm. The
comparative results of these experiments demonstrated that the proposed algorithm obtained
superior reconstruction performance in terms of spatial location, dual-source resolution, and
in-vivo practicability. It was believed that this study would promote the preclinical and clinical
applications of FMT in early tumor detection.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

With the development of medical imaging technology, fluorescence molecular imaging (FMI)
has widely applied in the study of drug delivery, protein function, preclinical, clinical, etc. [1–5].
However, FMI can only obtain the photon intensity of the object surface because of the absorption
and scattering of light transmission. Therefore, fluorescence molecular tomography (FMT),
which can accurately visualize and quantify the three-dimensional (3D) distribution of fluorescent
sources in deep turbidities by capturing the surface fluorescence distribution of fluorescence
sources using an ultra-sensitive charge-coupled device (CCD) camera, is favored by researchers
[6–8].

However, owing to the strong scattering property of biological tissues and the limited boundary
measurements with noise, FMT reconstruction is always an ill-posed problem [9,10]. Moreover,
the mutual coherence of system matrix derived by finite element method (FEM) is always as
high as above 90%, which also increase the complexity of FMT reconstruction [11]. Thus, the
reconstruction is still a challenging problem [12–14]. Over the past few years, many reconstruction
methods have been developed to reduce the ill-posedness [15–17]. Tikhonov regularization have
widely used to overcome ill-posedness by adding L2 norm [18]. The primary benefit of using L2
norm is the simplicity of the optimization problem. However, it causes over-smoothing, leading
to a blurring of the sources and making it difficult to obtain sharp boundaries [19].
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FMT is usually utilized for early tumor imaging, and in this stage the tumor is always small and
sparse in size compared to the entire body of the subject [20,21]. Mathematically speaking, the L0
norm is the sparsest constrain. The reconstruction algorithm based on the L0 norm regularization
algorithm involves a problem of combinatory optimization, which makes it inefficient or unfeasible
for practical applications. Thus, to improve the quality of the reconstruction, convex L1 norm
regularization has been adopted in FMT reconstruction. Several algorithms based on the L1 norm
have been proposed for optical molecular imaging and allow for more accurate results and less
computation time, such as the iterated shrinkage algorithm with the L1 norm [22], fast iterative
soft-thresholding algorithm [23] , L1 norm regularization algorithm based on the split Bregman
algorithm [24,25], gradient-based techniques, and the incomplete variable truncated conjugate
gradient algorithm. Moreover, the algorithm based on the L1 norm can obtain satisfactory results
and overcome the over-smoothing cause by the L2 norm.

Recently, some novel regularization algorithm base on non-convex Lp norm (0<p<1) have
been proposed. For example, He et al. proposed the half thresholding pursuit algorithm, with
significant improvements in achieving the accuracy and sparse for the reconstruction of FMT
[26]. In addition, Guo et al. proposed a non-convex sparse regularization approach (nCSRA)
framework, which have a better multiple-source resolution capability in terms of position
resolution, intensity resolution and size resolution [27]. Compared with the L1 norm, the Lp
norm (0<p<1) is a better approximation of the L0 norm. Thus, an algorithm based on Lp norm
can always obtain a sparser solution compared with L1 norm algorithms, thus ensuring stability
at the same time.

Recently, it was demonstrated in a series of papers that the difference of the L1 norm and L2
norm (L1-L2 norm), outperforms L1 norm and Lp norm in terms of promoting sparsity when
system matrix is highly coherent [28]. Inspired by this, L1-L2 norm regulation via difference of
convex algorithm (L1-L2 via DCA) algorithm, has been used in FMT reconstruction having a
great improvement in the sparsity of the solution [29]. However, the L1-L2 via DCA algorithm
decomposes the objective function as the difference of two convex functions, convert to L1 norm
minimization problem, which may not have analytical solutions. Thus, the robustness of L1-L2
via DCA algorithm is therefore poor, especially for multiple sources resolution. Furthermore,
because the L1-L2 via DCA algorithm for L1-L2 amounts to solving an L1 norm minimization
problem iteratively as a subproblem, it is much slower than L1 norm minimization [30].In
recently years, forward-backward splitting (FBS) method has been proposed to solve the nonlinear
and nonconvex least-squares problem with tight frame sparsity regularization in quantitative
photoacoustic tomography [31] and Low-dose CT [32]. These research prove the convergence
and efficiency of FBS, and provide a proximal operator of the L1-L2 metric.

To satisfy the need for early tumor detection in FMT, a novel L1-L2 norm regularization
algorithm via forward-backward splitting (L1-L2 via FBS) algorithm was proposed to recover the
distribution of small fluorescent sources in orthotopic glioma mouse models. First, L1-L2 via
FBS algorithm employ proximity operators and gradient descent to obtain the search point. It is
worth mentioning that we derive an analytical solution for the proximal operator of the L1-L2
norm. Second, they operate by splitting the objective to be minimized into simpler functions
that are dealt with individually to get a sparser solution. Thus, the main advantages of L1-L2
via FBS algorithm is full considering the highly coherent of the system matrix of FMT and the
handling of non-differentiable objectives and non-convex constraints due to the L1-L2 norm while
maintaining the simplicity of gradient descent methods and the sparsity of results. To validate the
performance of the proposed algorithm, groups of comparison experiments were designed using
numerical simulations and in-vivo imaging experiments for the L1-L2 via DCA algorithm [29],
the incomplete variables truncated conjugate gradient algorithm (IVTCG) based on L1 norm
[33], and L1/2 norm regulation based on Iterative shrinkage-thresholding algorithm (ISTA-L1/2)
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[27]. It has experimentally shown that the proposed L1-L2 via FBS algorithm performance better
in spatial location, dual-source resolution, robustness, and in-vivo practicability.

2. Materials and methods

2.1. Photon propagation model

In biological bodies, photon propagation within the near-infrared spectral band has a highly
scattering feature. For steady-state FMT with point excitation sources, the following coupled
diffusion equations (DE) have been commonly used to model the forward problem of FMT, which
is defined as [34–36]:⎧⎪⎪⎨⎪⎪⎩

∇ · (Dx(r)∇Φx(r) − µaxΦx(r)) = −Θsδ(r − rl)

∇ · (Dm(r)∇Φm(r) − µamΦm(r)) = −Φx(r)ηµaf (r)
r ∈ Ω (1)

where subscripts x and m denote the excitation and emission light respectively. Φx stands
for the photon flux density, Dx,m denote the diffusion coefficient in biological tissues, Dx,m =
1/3[µax,am + (1 − g)µsx,sm] , where µax,am and µsx,sm represent the absorption coefficient and
scattering coefficient respectively, and g is the anisotropy parameter; ηµaf (r) represents the
unknown fluorescence yield distribution to be reconstructed, Θsδ(r − rl) denotes the excitation
light which is considered as the point source. rl represents the position of a point source with an
amplitude of Θs. δ(r) is the Dirac function.

To solve these equations, the Robin-type boundary conditions are added on the boundary ∂Ω
of the domain Ω [37]:

2Dx,m∂Φx,m/∂n + qΦx,m = 0 (2)
where n represents the outward normal vector to the surface. q is a constant depending on the
optical reflective index mismatch at the boundary.

Based on FEM method, we can obtain the following linear model:

Ax = ΦΦΦ (3)

where A is an M × N weighting matrix, and x is an N × 1 vector denotes the unknown internal
distribution of the probes,ΦΦΦ is an M × 1 vector represents the measurements of surface photon
distribution.

2.2. Reconstruction Based on the forward-backward splitting (FBS) algorithm

In order to alleviate the ill-posedness of the inverse problem, the L1-L2 norm regularization was
adopted in FMT inverse problem, writing as:

min
x∈R

1
2
| |Ax −ΦΦΦ| |22 + λ(| |x| |1 − ||x| |2) (4)

where λ is the regulation parameter. Eq. (4) be expressed as

min
x∈R

1
2

f (x) + g(x) (5)

where:
f (x) = 1

2 | |Ax −ΦΦΦ| |22

g(x) = λ(| |x| |1 − ||x| |2)
(6)

Obviously, f (x) is differentiable convex function; however g(x) is no-convex function and
nondifferentiable, Eq. (5) cannot be minimized using simple gradient descent methods. For this,
a forward-backward splitting (FBS) method was adopted to address each term in Eq. (5).
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In the first stage, for improving the computational speed, the search point sk, was determined
by forward splitting, which can be obtained as follows:

sk = xk−1 − tk−1f ′(xk−1) (7)

where f ′(x) = A(Ax −ΦΦΦ) denotes the gradient of f (x) at the point x; and tk is the step size. and
utilize the Lipschitz condition to get the value of tk [38].

In the second stage, to ensure global convergence, an approximate solution x, and without
straying too far from a starting point sk. It can be through the proximal operator of g(x) obtained:

xk ∈ proxtg(sk) = arg min 1
2tk | |x − sk | |

2 + g(x)

= arg min 1
2σ | |x − sk | |

2 + | |x| |1 − ||x| |2
(8)

where σ = tkλ; Define x∗ as the optimal solution. In FMT, because of the non-negative constraint
of the unknow source, the non-negative constraint is placed on the vectors, si

k ≥ 0, x∗i ≥ 0. Let
G(x) = 1

2σ | |x − sk | |
2
2 + | |x| |1 − ||x| |2, and G′(x) be the derivative of G(x) , then for all x ≠ 0:

G′(x) = 1
σ
(x − sk) + q −

x
| |x| |2

(9)

when G′(x) = 0, we can get:

(1 −
σ

| |x| |2
)x = sk − σq for x ≠ 0 (10)

where q ∈ ∂ | |x| |1 is a subgradient of the L1 norm:

q = ∂ | |x| |1 = sign(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if xi>0

−1 if xi<0

[1,−1] for xi = 0

(11)

For any satisfying Eq. (9), we can obtain sk = σq + (1 − σ
| |x | |2 )x. And through a simple

calculation, we have:

G(x) = 1
2σ

| |x| |22 −
1
σ
<x, sk>+

1
2σ

| |sk | |
2
2 + | |x| |1 − ||x| |2

=
1

2σ
| |x| |22 −

1
σ
<x,σq + (1 −

σ

| |x| |2
)x>+ 1

2σ
| |sk | |

2
2 + | |x| |1 − ||x| |2

=
1

2σ
| |x| |22 − (

1
σ

−
1

| |x| |2
)| |x| |22 +

1
2σ

| |sk | |
2
2 − ||x| |2

= −
1

2σ
| |x| |22 +

1
2σ

| |sk | |
2
2<G(0)

(12)

Therefore, the x∗ can be determined among all x satisfying Eq. (10) with the largest norm.
Without loss of generality sk

i is a non-increasing vector, sk
1 ≥ sk

2 ≥ · · · ≥ sk
i ≥ 0, then we

discuss the optimal solution x∗:
1) When sk

1>σ, then sk
1 −σq1>0. For i = 1, the right-hand side (RHS) of Eq. (10) is positive,

so the left-hand side (LHS) is positive as well; owing to the non-negative constraint on the
unknown vector, we obtain (1 − σ

| |x | |2 )>0. For this i, which sk
i ≤ σ, we have x∗i = 0; Otherwise

for this i, the LHS of Eq. (10) is positive, while the RHS is nonpositive. For this i which sk
i>σ,
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we have qi = 1. Thus, for RHS of Eq. (10):sk − σq = soft(sk,σ); soft(sk,σ) is the proximal
operator of L1 norm regularized, appoint z = soft(sk,σ), and defined as Eq. (13).

z = soft(sk,σ) = sign(sk)(|sk | − σ)

sign(sk) = 1 if sk>0, sign(sk) = −1 if sk<0
(13)

Do a simple operation on Eq. (10):

(1 −
σ

| |x| |2
)x = z

| |x −
σx
| |x| |2

| |2 = | |z| |2

| |(x| |x| |2 − σx)| |2 = | |z| |2 | |x| |2
| |x| |2 = | |z| |2 + σ

x∗ = z
1 − σ

| |x | |2
=

| |x| |2
| |x| |2 − σ

z = | |z| |2 + σ
| |z| |2

z = (1 +
σ

| |z| |2
)z

(14)

2) When sk
1 ≤ σ, for this i which sk

i< | |sk | |∞, we have x∗ = 0, Otherwise for this i, RHS of
Eq. (10) is negative, thus (1− σ

| |x | |2 )<0, and sk
1−σq1 = (1− σ

| |x∗ | |2 )x
∗
1 ≤ (1− σ

| |x∗ | |2 )x
∗
i = sk

i−σqi,
which is a contradiction to sk

1>sk
i. For x∗ ≠ 0, from Eq. (10), we can get: σ− ||x| |2 = | |sk−σq| |2.

And finding | |x∗ | |∞ is equivalent to looking for the minimum value of | |sk −σq| |2 and x∗ ≠ 0. So,
choose x∗ is a 1-sparse vector, then can get | |x∗ | |2 = x∗ = σ − ||sk − σq| |2 = σ − (σ − sk) = sk.

Based on the above statement, the pseudo code of the main steps of L1-L2 via FBS algorithm
is given in Algorithm 1.

Algorithm 1: L1-L2 via FBS algorithm

Input: Sensitivity matrix A, Regulation parameters λ, Surface photon distributionΦΦΦ,

t0 = 1, x0 = 0, Maximum iteration numbers k = 1000, Minimum residuals err = 1e − 6

For k = 1 to k do

Step1: Determine the search point by forward splitting: sk = xk−1 − tk−1f ′(xk−1)

Step2: Calculate the approximate solution of Eq. (7) by backward splitting,

the analytical solution as follows:

σ = tk−1λ

if |sk |∞>σ

Based on Eq. (13), calculate z = soft(sk,σ); xk = z(| |z| |2 + σ)/ | |z| |2,

else

xk =

⎧⎪⎪⎨⎪⎪⎩
0 if |sk

i | ≤ |sk |∞

|sk |∞ if |sk
i | = |sk |∞, i = min

{︁
i, |sk

i | = |sk |∞
}︁

if | |xk − xk−1 | |2<err;

break

tk = | |xk−xk−1 | |2
2 | |∇f (xk)−∇f (xk−1) | |2

End for
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3. Experiments setting

3.1. Numerical simulations

A series of numerical simulations based on the head of the common digital mouse model were
conducted to evaluate the performance of L1-L2 via FBS algorithm, as shown in Fig. 1(a). The
mouse head was segmented into three organs: the muscle, skull, and brain. Their related optical
properties list in Table 1, with an excited light wave length is 750nm and an emission wavelength
is 820nm [10]. Figure 1(b) shows the distribution of four excitation source, which were located
one transport mean free path beneath the surface on the plane of z = 18mm.

Fig. 1. (a) 3D views the head of a digital mouse. (b) Excitation sources on the plane of
z = 18mm. The four black circles denote the point excitation sources. (c) The views of
simulation models with the single source. (d)-(f) The views of simulation models with the
double source, where the edge-to-edge distance between the two source is different. (g) The
mesh for inverse reconstruction.

Table 1. Optical parameters in numerical simulation and in-vivo experiments

Material µax µ
′

sx µam µ
′

sm

Muscle 0.0474 0.3122 0.0287 0.2427

Skull 0.0326 2.1140 0.0197 1.8541

Brain 0.0183 1.3784 0.0167 1.2156

In order to verify the feasibility of the L1-L2 via FBS algorithm, single and double source
experiments were designed in feasible experiment. In the single source experiment, one sphere
fluorescent source with a 1mm radius placed in the brain with center at (9, 13, 18mm), as shown
in Fig. 1(c). In double sources experiment, two sphere fluorescent sources with a 1mm radius are
placed in the center positions placed at (6, 13, 18mm) and (12, 13, 18mm) respectively, shown in
Fig. 1(d).

In addition, to verify the robustness of our proposed algorithm, two groups of numerical
simulations were conducted by considering the number of excitation sources and the edge-to-edge
distance between two sphere fluorescent sources in robustness experiment. Firstly, in the single
source experiments, the number of the excitation sources was decrease to two (1 and 3 was used)
and one (1 was used), respectively. Secondly, in the double source experiments, two sphere
fluorescent sources with a 1mm radius were placed at (6, 13, 18mm) and (11, 13, 18mm), the
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edge-to-edge distance (EED) was 2mm, as shown in Fig. 1(e). Furthermore, the center positions
of two sphere fluorescent sources were placed at (7.5, 13, 18mm) and (10.5, 13, 18mm) with the
edge-to-edge distance was 1mm, as shown in Fig. 1(f).

In all numerical simulation experiment,the fluorescent yield ηµaf (r) of the fluorescent target
was set to be 0.05 mm−1.The digital mouse model was discretized into a tetrahedral mesh through
Amria 5.2. A uniform tetrahedral mesh which include 10158 nodes and 52696 tetrahedral
elements was used in inverse reconstruction. In addition, we used diffusion approximation
model based on FEM to simulate the propagation of light through tissues to obtain specific
surface energy distributions. The all-experiment codes were written in MATLAB2020 and were
performed on a desktop computer with 2.90 GHz Intel Processor I5-9400F and 16G RAM

3.2. FMT imaging system

In order to acquire the CT data and optical image, an FMT imaging system was adopted in
our study. Which consist of three parts: (1) Optical acquisition module mainly was composed
of an electron multiplying charge coupled device (EMCCD) camera (iXon Ultra DU-897,
Andor), a continuous wave optical laser (BS750-6WGA, BoSion Optoelectronic Technology,
CHN) and optical filter (FB820-10, THORLABS, USA). (2) Micro-CT system included a
X-tray detector (1512N-C90-HRCC, Dexela, USA), and an X-ray generator (L9181-02 MT2195,
HAMAMATSUPHOTONICS, CHN); (3) Control module was consist of a 360-degree motorized
turntable (RAK100, Zolix, CHN), and a controller (Zolix Instruments Co., Beijing, CHN). As
show in Fig. 2, X-Ray Source, Turntable, and X-Ray Detector placed on the same line. In addition,
The EMCCD was perpendicular with this line.

Fig. 2. Our prototype FMT imaging system.

3.3. In-vivo imaging experiment

To further evaluate the performance of L1-L2 via FBS algorithm, in-vivo glioma mouse experiments
were performed. Animal experiments were carried out under isoflurane gas anaesthesia, and
every effort was made to relieve the pain of the male mice. Additionally, 5 × 105U-87 MG
cells in 6µl phosphate buffer solution was injected into the brain of the mouse to construct
the orthotopic glioma model. After seven days, the tumor-bearing mice were injected with
Tf-IRDye800 (excitation spectrum: 750nm, emission spectrum: 820nm ) via tail vein. Six hours
later, fluorescence images and CT data were acquired. And the MRI data obtained subsequently,
which was used to determine the location of the tumor.

To provide the excitation illumination, a 750nm continuous wave semiconductor laser with
the output power of 450mW was used was used as the single excited source to reflex excite a
fluorescent probe. And an electron multiplying charge coupled device (EMCCD) camera ((iXon
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Ultra DU-897, Andor) coupled with 820± 20nm bandpass filter was cooled to −80◦C to collect
surface fluorescence image with a 120◦ field of view (FOV). The exposure time (1.6s), high shift
speed (12.9us) and high-speed readout rate (10MHz at 16-bit) were set up to restrain the readout
noise and the shifting noise. After that, X-ray source was set 70kVp and 39W to obtaining 360◦
projection data.

Prior to the FMT reconstruction, some essential preprocessing operations were carried out.
First, the raw CT data was converted into 3D volume data via the Feldkamp-Davis-Kress (FDK)
algorithm for obtaining anatomical structural information. Second, the major organs including
muscle, skull and brain were segmented by using Amria 5.2 (Amria, Visage Imaging, Australia).
Lastly, the mouse model was discretized into 11504 nodes and 58970 tetrahedral elements for
2D-3D surface energy mapping and FMT reconstruction.

3.4. Algorithm comparison and evaluation index

For comparison, three effective algorithms based on sparse regularization (the L1-L2 via DCA,
IVTCG, and the ISTA-L1/2) were chosen as comparison methods. To promise all algorithms
convergent, by experience the maximum iteration numbers and the minimum residuals were set
as 1000 and 1e-6, respectively. In addition, to ensure the reliability of the results, the Generalized
Cross-Validation method was adopted to determine the regulation parameters λ [39]. The final
regularization parameter values for different methods in different experiments have been listed in
Table 2.

Table 2. Regularization parameters for different methods in different experiments.

Method
Feasible experiment Excitation source EED

In-vivo experiment
Single Double two one 2 1

FBS 7e0 4e-0 1.05e1 1.05e1 2.5e0 1e0 1e-3

DCA 1e-1 1e-1 0.4e-1 0.8e-1 1e-3 1e-3 5e-0

IVTCG 0.8e0 5e0 1e0 7.5e-3 4e0 1e0 1e1

ISTA-L1/2 1e1 5e0 1e1 5.8e0 2e0 3e0 5.8e0

To further quantitative evaluate the accuracy of FBS algorithm in both source location and
shape recovery, location error (LE), contrast-to-noise ratio (CNR), means square error RMSE,
and Dice index were used as the quantitative indexes. The LE measures the distance variation
between the centers of the actual region and the reconstructed region. LE is defined as:

LE = | |Lr − L0 | |2 (15)

where Lr is the center of the reconstructed area with the highest value in non-zero value of x. L0

is the barycenter of the real fluorescent area. | | . | |2 is the operator of Euclidean distance. A
lower LE index indicates that the reconstruction is better. Dice was introduced to evaluate the
similarity of the reconstruction area and the real fluorescent area, which defined as:

Dice =
2|sr ∩ s0 |

|sr | + |s0 |
(16)

where sr and s0 represent the reconstruction area and the actual area, respectively. A high dice
index indicates that the two regions have better similarities in both location and morphology.More
details, the reconstructed fluorescence area was determined by the non-zero tetrahedron region
based on x. CNR was performed to demonstrate the contrast of the reconstructed signal and
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background. Which defined as follows:

CNR =
µROI − µROB√︂

ωROIσ
2
ROI + ωROBσ

2
ROB

(17)

where ωROI is the weight coefficient of the region of interest (ROI), and ωROB is the weight
coefficient of the region of back-ground (ROB). µROI , σROI are the mean values and standard
deviations of ROI; µROI , σROB are the mean values and standard deviations of ROB respectively.
A higher CNR value indicates that the source is easier to distinguish from the background.
Additionally, RMSE is defined as

RMSE =

⌜⎷∑︁
N
(Xr − Xt)

N
(18)

where N is the number of nodes, Xr is the reconstructed fluorescence yield, and Xt is the ground
truth. A low RMSE means better reconstruction result.

4. Experiment results

4.1. Numerical simulations results

4.1.1. Feasible experiment

Figure 3 showed the reconstruction results of the feasible experiment. Figure 3(a)-(d) and
(e)-(h) show the reconstruction results in 3D and transverse view of the single and double source
experiment using L1-L2 via FBS and three comparing algorithms. In 3D view, the actual and
reconstructed fluorescent source were delineated with red meshes and green areas, respectively.
Meanwhile, in transverse view the black circles indicated the actual positions of the fluorescent
source in the slice of z = 18mm. For better evaluated the reconstruction results, reconstructed
source center and five quantitative indicators are listed in Table 3.

Table 3. Quantitative results of single and double source reconstruction experiment.

Group Method Center (mm) LE (mm) Dice RMSE CNR RFY(mm−1)

Single

FBS (9.08, 13.09, 17.82) 0.21 75% 0.00190 34.6 0.050

DCA (9.15, 13.20, 17.75) 0.35 60% 0.00202 23.94 0.085

IVTCG (9.23, 13.07, 17.76) 0.33 74% 0.00259 12.48 0.090

ISTA-L1/2 (9.34, 13.09, 17.89) 0.37 72% 0.00258 7.47 0.032

Double

FBS
(11.66, 12.79, 18.07) 0.33

69% 0.00237 44.7 0.050
(6.37, 12.89, 17.82) 0.42

DCA
(12.32, 13.28, 18.04) 0.44

36% 0.00253 14.07 0.060
(6.86, 12.99, 18.12) 0.87

IVTCG
(11.68, 12.91, 17.89) 0.34

51% 0.00254 7.03 0.075
(6.45, 12.85, 17.91) 0.48

ISTA-L1/2
(11.65, 12.86, 18.09) 0.38

61% 0.00242 19.79 0.065
(6.43, 12.85, 17.90) 0.46

From these results, it is obvious that the recovery source by our proposed algorithm is closer
the true source compared with other approaches both in single and double source reconstruction.
Furthermore, the quantified results in Table 3 also indicate that proposed L1-L2 via FBS algorithm
achieves the smallest LE and RMSE, and largest Dice similarity and CNR. This indicates that
L1-L2 via FBS algorithm is feasible and more suited for the application of early tumor detection.
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Fig. 3. Result of the feasible experiments (a)-(d) 3D-view and transverse view of the single
source reconstructed results (e)-(h) 3D-view and transverse view of the double sources
reconstructed results, with the edge-to-edge distance was 4mm. In 3D view, green areas
denote the reconstructed fluorescent sources and red grid represent actual fluorescent source.
In transverse view, the black circles represent the actual sources in the slice over the centers
of the sources at z = 18mm.

However, in slice views, L1-L2 via DCA have some location deviation in x-axis as shown in
Fig. 3(b) and Fig. 3(f), which resulted in some artifacts and poor shape recovery performance
with smallest Dice similarity and largest location errors. In particular, LE obtained by L1-L2 via
DCA in double source reconstruction is the worst because of the discrete artifacts around the left
source. Meanwhile, in double source reconstruction, compare with L1-L2 via FBS algorithm,
two sources given by IVTCG and ISTA-L1/2 algorithm have a little tendency to move towards the
center with some location deviation from actual area, as shown in Fig. 3(e) and (h). In addition,



Research Article Vol. 12, No. 12 / 1 Dec 2021 / Biomedical Optics Express 7817

in single source reconstruction, ISTA-L1/2 algorithm has some deviation in z-axis from the 3D
view in Fig. 3(d), which is consistent with the largest LE of 0.37mm in Table 3.

4.1.2. Robustness experiment

Figure 4 and Fig. 5 shows the robustness of the L1-L2 via FBS algorithm. In Fig. 4(a)-(d) and
(e)-(f) show the reconstructed results in 3D view and transverse view with decreasing the number
of excitation source. The corresponding quantitative indicators are presented in Table 4. With
the reduction of the number of excitation source, although the reconstruction precision has some
different degrees of deterioration, the location error and Dice similarity of all four algorithms can
be kept within 0.6mm and above 58% in two excitation source case. When one excitation source
used, location error and Dice similarity of L1 − L2 via FBS is still 0.28mm and 73% without
much deterioration compared with that in 4 excitation source. However, the offset of the green
reconstructed area in Fig. 4(f), (g), and (h) are obvious compared with the left corresponding
figures. When have one excited source, the location error and Dice similarity of these three
contrast algorithm are floating about 0.2mm and 6% than that in two excited source. The worst of
it is that the Dice similarity of IVTCG is decrease to 35% with a significant shape information
losing. In a word, compare with other algorithms, L1-L2 via FBS algorithm is more robust in
terms of location error and Dice similarity when the number of excited sources is decreased.

Table 4. Quantitative results of different number excitation source experiment.

Method Exicite source Center (mm) LE(mm) Dice RMSE CNR RFY(mm−1)

FBS
two (9.07, 12.96, 17.73) 0.21 74% 0.00191 41.19 0.053

one (9.11, 13.10, 17.86) 0.28 73% 0.00196 26.27 0.054

DCA
two (9.19, 12.74, 17.58) 0.52 60% 0.00202 26.32 0.075

one (9.13, 13.63, 17.85) 0.70 54% 0.00199 23.67 0.075

IVTCG
two (9.14, 12.79, 17.69) 0.39 70% 0.00186 26.72 0.050

one (8.72, 12.65, 18.39) 0.58 58% 0.00201 11.49 0.036

ISTA-L1/2
two (9.21, 12.80, 17.63) 0.46 58% 0.00199 29.07 0.065

one (8.70, 12.63, 18.43) 0.63 53% 0.00197 13.40 0.011

Furthermore, the robustness in double source reconstruction were proved by Fig. 5 and Table 5.
Figure 5(a)-(d) and (e)-(h) show the results in 3D view and transverse view of the different
edge-to-edge distance experiment.The reconstruction challenges increased with decreasing edge-
to-edge distance. And these robustness experiment also reflects the spatial resolving capability.
From these results, we can see that L1-L2 via FBS algorithm can distinguish two source with
edge-to-edge distance of 1mm clearly, as shown in Fig. 5(e). Meanwhile, the average location
error and Dice of L1-L2 via FBS can reach 0.35mm and 63% with a good performance in
terms of location accuracy, shape recovery capability. In addition, from a series of comparative
results, the performance of ISTA-L1/2 would be the second-best in terms of LE and Dice.
However, the reconstructed image of L1-L2 via DCA were blurred with some image artifacts
even when edge-to-edge distance was 2mm, as shown in Fig. 5(b). Thus, the corresponding
Dice, CNR and LE were worst in Table 5. From Fig. 5(f), two sources given by L1-L2 via DCA
cannot be distinguish because of many existing discrete artifacts. Similarly to Fig. 3(f), the two
reconstructed source have a tendency to move towards the center when edge-to-edge distance is
2mm. These tendencies are even more pronounced when the edge-to-edge distance is 1mm as
shown in Fig. 5(g). In conclusion, all these results demonstrated that the L1-L2 via FBS algorithm
have a best robustness in dual-sources resolution.
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Fig. 4. Result of the different number excite source experiment (a)-(d) 3D-view and
transverse view of two excitation source experiment results (e)-(h) 3D-view and transverse
view of the one excitation sources experiment results. In 3D view, green areas denote
the reconstructed fluorescent sources and red grid represent actual fluorescent source. In
transverse view, the black circles represent the actual sources in the slice over the centers of
the sources at z = 18mm.

4.1.3. In-vivo imaging experiment

In in-vivo imaging experiments, to determine the actual source region, MRI image was adopted to
draw the outline of the glioma. The reconstructed results of four comparing algorithm in 3D view,
transverse view were displayed in Fig. 6(a)-(d), respectively. The reconstructed images in the CT
coordinate system were merged with the MRI slice, as shown in Fig. 6(e)-(h). The registration
process can divide into three steps: First, by using bwperim and imfill function in MALTAB, we
obtained the contour of the CT and MRI images; Second, we used imshowpair and imregconfig
function in MALTAB to obtain the optimization metrics and registration parameters; Third, CT
and MRI image was put into imregister function and conducted MRI/CT registration based on
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Fig. 5. Result of the different edge-to-edge distance experiment (a)-(d) 3D-view and
transverse view of the edge-to-edge distance was 2mm experiment results (e)-(h) 3D-view
and transverse view of the edge-to-edge distance was 1mm experiment results. In 3D
view, green areas denote the reconstructed fluorescent sources and red grid represent actual
fluorescent source. In transverse view, the black circles represent the actual sources in the
slice over the centers of the sources at z = 18mm.

the obtained optimization metrics. The white outline is the registration results of the contour of
cross-sectional images in the plane z = 17mm. And the color area and blue dotted line represent
the reconstruction tumor region and the actual tumor margin. Meanwhile, to analyze the results
quantitatively, reconstructed source center, LE and Dice were calculated and summarized in
Table 6.

According to the in-vivo reconstruction results, the tumors were successfully reconstructed
using four different approaches. However, for L1-L2 via DCA and IVTCG algorithm, the
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Table 5. Quantitative results of different edge-to-edge distance experiment

Method Distance(mm) Center(mm) LE(mm) Dice RMSE CNR RFY(mm−1)

FBS

2
(10.03, 13.13, 17.57) 0.44

66% 0.00147 35.27 0.050
(7.06, 13.02, 18.22) 0.23

1
(10.70, 12.82, 18.04) 0.37

63% 0.00251 16.47 0.130
(7.80, 13.05, 18.44) 0.34

DCA

2
(10.93, 13.23, 17.39) 0.65

42% 0.00252 5.98 0.070
(7.06, 13.00,18.41) 0.44

1
(11.95, 14.93, 16.16) 3.03

35% 0.00304 5.94 0.040
(8.7, 13.15, 18.25) 0.82

IVTCG

2
(10.49, 12.83, 17.83) 0.52

55% 0.00174 15.14 0.070
(7.45,12.94, 17.83) 0.48

1
(10.49, 12.66, 17.65) 0.51

49% 0.00259 13.02 0.120
(7.37, 12.89, 17.91) 0.40

ISTA-L1/2

2
(10.85, 13.24, 17.68) 0.42

60% 0.00154 41.27 0.055
(7.08, 13.05, 18.44) 0.45

1
(10.75, 13.09, 17.57) 0.49

55% 0.00244 10.92 0.060
(7.08, 13.05, 18.44) 0.48

Table 6. Quantitative results of in-vivo experiment

Method Center (mm) LE (mm) Dice

FBS (40.48, 40.13, 16.60) 0.21 84%

DCA (40.65, 39.29, 16.33) 0.52 40%

IVTCG (40.65, 39.29, 16.33) 0.39 34%

ISTA-L1/2 (40.12, 39.26, 15.99) 0.46 70%

reconstructed tumor were tend to brain interior with large location error and small Dice similarity.
Fortunately, the reconstructed area obtained by the L1-L2 via FBS and ISTA-L1/2 algorithm were
consistent with the actual tumor area in MRI image, and their Dice value can reach 84% and 70%
respectively. However, as can be from Table 6, the location deviation of the ISTA-L1/2 algorithm
mainly manifest in z-axial with LE of 1.24mm. In general, L1-L2 via FBS algorithm showed the
best accuracy with the least LE and largest Dice similarity. These results further revealed the
superior performance of L1-L2 via FBS in obtaining the morphology and location tracking of the
in-vivo fluorescence probe distribution in orthotopic glioma mouse models.
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Fig. 6. Reconstruction results of the in-vivo experiments. (a)-(d) 3D-view and transverse
view of in-vivo experiment result. (e)-(h) Images fused by the transverse view and MRI
image. In 3D-view the red areas represent reconstruction result. In fused images the white
curve is the contour of cross-sectional images, the red area is the reconstruction result, and
the blue dotted line outlines the actual location of the tumor.

5. Discussion and conclusion

As a promising preclinical imaging technique, FMT has been paid much attention in imaging
theories, acquisition equipment, and biomedical applications. However, because of the severe
ill-posedness of inverse reconstruction, the accuracy has limited in many biomedical applications.
In this work, a novel L1-L2 norm regularization via forward-backward splitting (L1-L2 via FBS)
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method was proposed for better recovering the 3D distributions of early tumor. Theoretically,
L1-L2 via FBS algorithm employ proximity operators and gradient descent to obtain the search
point and full consider the highly coherent of the system matrix of FMT. Meanwhile, it handles
non-differentiable objectives and non-convex constraints caused by L1-L2 via FBS norm by
splitting the objective to be minimized into simpler functions that are dealt with individually. Thus,
L1-L2 via FBS method outperforms Lp-norm (0<p<1) and L1-norm in terms of promoting sparsity
when sensitivity matrix A is highly coherent. Furthermore, FBS iterations are convergence and
not trapped at stationary points, which can guarantee the robust of the solution.

To validate the performance of the proposed L1-L2 via FBS algorithm, numerical simulations
and in-vivo experiments were conducted. L1-L2 via DCA, IVTCG and ISTA-L1/2 were employed
for qualitative and quantitative comparisons. In numerical simulations, feasibility and robustness
experiments were conducted. The feasibility experiment results show that L1-L2 via FBS
algorithm has a best performance in terms of location error and Dice similarity both in single and
double source experiment. Which demonstrated the advantage of L1-L2 via FBS algorithm in
location accuracy, and morphology recovery for early tumor detection. In robustness experiments,
with the gradually reducing of the excitation source, the ill-posedness of FMT reconstruction is
aggravated. Fortunately, the performance of the L1-L2 via FBS algorithm was still satisfactory.
Even in the extreme case where only one excited node was used, the proposed algorithm still
successfully recovered the source with a deviation of 0.21mm. Which demonstrates that the
accuracy of location and morphology of the proposed algorithm remained steady. And it also
indicates the potential of the L1-L2 via FBS algorithm in single view FMT reconstruction. By
considering the application requirements for multiple tumor detection, with the edge-to-edge
distance decreasing, the spatial resolving capability of inverse reconstruction algorithms was
verified in another robustness experiments. From these results, we can see that the L1-L2 via FBS
algorithm can distinguish two sources with an edge-to-edge distance of 1 mm clearly. While,
the tumor region reconstructed by the comparison algorithms exhibited problems of inaccuracy,
spatial discontinuity and image blur with some image artifacts. Lastly, in in-vivo experiment,
tumor-bearing mouse model was developed to further evaluate the practicability of L1-L2 via
FBS algorithm. The in-vivo experimental results exhibited that L1-L2 via FBS algorithm was
great practicality for early tumor detection of living animals. And compared to the other methods,
the region reconstructed using L1-L2 via FBS algorithm was a better approximation of the actual
tumor distribution. It further revealed the superior performance of L1-L2 via FBS algorithm in
obtaining the morphology and location tracking of the in-vivo fluorescence probe distribution. In
summary, this result demonstrates the usefulness of the L1-L2 via FBS algorithm in resolving
multiple sources and improving reconstruction quality and spatial resolution.

It needs to be emphasized that in this work, the absorption and scattering coefficients assigned
to each organ were estimated on the basis of a compilation of relevant tissue optical property data
reported in the literature [40]. In the pre-clinical practical application, the educated guesses of the
optical properties will influence the accuracy of the reconstructed results. In order to solve this
problem, some more effective measuring method, like diffusion optical tomography (DOT) [41],
or some other near infrared imaging method will be adopted to measure the optical properties of
tissue and background. Based on that, in in-vivo experiment, the reconstruction accuracy of our
proposed algorithm will be further improved. Besides that, due to the lack of absolute calibration
technique for photon number and the standard for determining the distribution of tumors in living
animals, in in-vivo experiment, we did not quantify the CNR and RMSE. In the future, based on
the integrating sphere method [42], it is necessary to quantify the reconstruction results precisely
by adopting some quantitative analysis method and multimodal imaging technology.

Although L1-L2 via FBS algorithm has achieved much better results, the work on this breed of
algorithms is far from done, as there are various analysis questions that remain open. Firstly,
in our research, L1-L2 was limited by the equal penalty for the L1 and L2 norms. Considering
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the versatility, it can be generalized by considering the L1-αL2 metric for α ≥ 0 in further work.
Secondly, an analytical solution for the proximal operator of the L1-L2 metric was derived, leading
to classical fast L1 norm solvers such as fast iterative soft-thresholding algorithm and alternating
direction method of multipliers (ADMM) that is applicable for L1-L2 norm. Therefore, some
comparison study will be conducted to confirm the efficient of these optimal algorithms. Lastly,
our research mainly focus on the application of FMT in early tumor detection. For some other
preclinical application, the types of probe distributions will have a significant difference, which
may reduce the performance of our proposed sparse regularization algorithm in some degree.
In this case, L1-L2 norm should be coupled with some other non-sparse regularization terms to
recovery the continuous bigger area probe distributions.

In conclusion, a novel L1-L2 norm regularization via forward-backward splitting method
was proposed to improve the reconstruction accuracy of FMT in this paper. The L1-L2 norm
regularization was designed by full considering the highly coherent of the system matrix of
FMT and maintaining the simplicity of gradient descent algorithms and the sparsity of results.
Compared with several sparse reconstruction algorithms, L1-L2 via FBS algorithm performs
better in terms of location accuracy, dual-source resolution capability, robustness and in vivo
practicability. We believed that this study would promote the preclinical and clinical applications
of FMT in early tumor detection.
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